Search results for "Gauge theories"

showing 10 items of 12 documents

The moduli spaces of S-fold CFTs

2019

An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of SL(2,Z). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T(U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turne…

High Energy Physics - TheoryNuclear and High Energy PhysicsPure mathematicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciBrane Dynamics in Gauge TheoriesStructure (category theory)FOS: Physical sciencesString theory01 natural sciencesSupersymmetric Gauge TheoryHigh Energy Physics::Theory0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysics010308 nuclear & particles physicsQuiverSupersymmetryModuli spaceBrane Dynamics in Gauge Theories Duality in Gauge Field Theories Supersymmetric Gauge Theory Supersymmetry and DualityHigh Energy Physics - Theory (hep-th)Supersymmetric gauge theorySupersymmetry and Dualitylcsh:QC770-798Anti-de Sitter spaceBraneDuality in Gauge Field TheoriesJournal of High Energy Physics
researchProduct

Pinch Technique: Theory and Applications

2009

We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…

High Energy Physics - TheoryParticle physicsSpontaneous symmetry breakingGluonsHigh Energy Physics::LatticeFOS: Physical sciencesGeneral Physics and AstronomyDynamical mass generationGauge-invarianceSchwinger–Dyson equationsRenormalizationTheoretical physicsQuantization (physics)symbols.namesakeHigh Energy Physics::TheoryHigh Energy Physics - Phenomenology (hep-ph)Non-Abelian gauge theoriesFeynman diagramGauge theoryGauge bosonsQuantum chromodynamicsPhysicsBackground field methodGreens functionsElectroweak interactionHigh Energy Physics::PhenomenologyFísicaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)symbols
researchProduct

Higgs production in a warped extra dimension

2012

Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg → h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in …

High Energy Physics - TheoryPhysicsQuarkParticle physicsNuclear and High Energy PhysicsLarge Hadron ColliderHiggs Physics010308 nuclear & particles physicsBrane Dynamics in Gauge TheoriesElectroweak interactionHigh Energy Physics::PhenomenologyYukawa potentialFOS: Physical sciencesField Theories in Higher Dimensions01 natural sciencesStandard ModelHiggs sectorHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesHiggs bosonSymmetry breaking010306 general physicsHiggs Physics; Field Theories in Higher Dimensions; Brane Dynamics in Gauge Theories
researchProduct

Twistor string as tensionless superstring

2007

6 pages.-- PACS nrs.: 11.30.Pb, 11.25.-w, 11.10.Kk, 12.60.Jv.-- ISI Article Identifier: 000247103400009.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-th/0702133

High Energy Physics - TheoryPhysicsTwistorsSupersymmetric gauge theoriesLorentz transformationFOS: Physical sciencesGeneral Physics and AstronomySuperstring theorySuperstringSuperspaceSpace (mathematics)String (physics)Action (physics)Twistor theoryHigh Energy Physics::TheoryTheoretical physicssymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)symbolsMHV amplitudesSupersymmetrySpin-½Fortschritte der Physik
researchProduct

Supersymmetric Indices of 3d S-fold SCFTs

2019

Enhancement of global symmetry and supersymmetry in the infrared is one of the most intriguing phenomena in quantum field theory. We investigate such phenomena in a large class of three dimensional superconformal field theories, known as the S-fold SCFTs. Supersymmetric indices are computed for a number of theories containing small rank gauge groups. It is found that indices of several models exhibit enhancement of supersymmetry at the superconformal fixed point in the infrared. Dualities between S-fold theories that have different quiver descriptions are also analysed. We explore a new class of theories with a discrete global symmetry, whose gauge symmetry in the quiver has a different glo…

Large classHigh Energy Physics - TheoryNuclear and High Energy PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciBrane Dynamics in Gauge TheoriesFOS: Physical sciencesFixed point01 natural sciencesTheoretical physicsHigh Energy Physics::Theory0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityQuantum field theory010306 general physicsGlobal structureGauge symmetryPhysics010308 nuclear & particles physicsQuiverSupersymmetryGlobal symmetryHigh Energy Physics - Theory (hep-th)Conformal Field Models in String TheoryConformal Field Models in String Theory Supersymmetry and Duality Brane Dynamics in Gauge TheoriesSupersymmetry and Dualitylcsh:QC770-798
researchProduct

Time evolution of linearized gauge field fluctuations on a real-time lattice

2016

Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

Nuclear TheoryPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeFOS: Physical sciences114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencestime evolutionGauge theory010306 general physicsEngineering (miscellaneous)Quantum fluctuationlattice simulationsPhysics010308 nuclear & particles physicsGauss' lawGaussHigh Energy Physics - Lattice (hep-lat)Time evolutionParticle Physics - LatticeHigh Energy Physics - PhenomenologyClassical mechanicsgauge theories
researchProduct

Pinch technique for Schwinger-Dyson equations

2007

40 pages, 11 figures.-- ISI Article Identifier: 000245922000041.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0611354

Nuclear and High Energy PhysicsParticle physicsGeneralizationStructure (category theory)FOS: Physical sciencesContext (language use)Skeleton (category theory)Theoretical physicsHigh Energy Physics - Phenomenology (hep-ph)Self-energiesBackground-field MethodAbelian Gauge TheoriesPhysicsBackground field methodScalar (physics)FísicaPerturbation-theoryEffective ChargeFundamental interaction3-point VertexHigh Energy Physics - PhenomenologyNonperturbative EffectsQuantum Chromodynamics (QCD)Gauge SymmetryPinchBRST SymmetryJournal of High Energy Physics
researchProduct

Analytic form of the full two-loop five-gluon all-plus helicity amplitude

2019

We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In order to achieve this, we calculate the required master integrals for all permutations of the external legs, in the physical scattering region. We verify the expected divergence structure of the amplitude, and extract the finite hard function. We further validate our result by checking the factorization properties in the collinear limit. Our result is fully analytic and valid in the physical scattering region. We express it in a compact form containing logarithms, dilogarithms and rational functions.

PhysicsHigh Energy Physics - Theory530 PhysicsMathematical analysisGeneral Physics and AstronomyFOS: Physical sciences10192 Physics InstituteRational functionFunction (mathematics)01 natural sciencesHelicity3100 General Physics and AstronomyHigh Energy Physics - Phenomenology; High Energy Physics - Phenomenology; High Energy Physics - TheoryScattering amplitudeHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Phenomenology (hep-ph)FactorizationHigh Energy Physics - Theory (hep-th)0103 physical sciencesGauge theories Perturbation theory Perturbative QCD Scattering amplitudes GluonsPerturbation theory (quantum mechanics)Limit (mathematics)010306 general physics
researchProduct

Infra-Red Asymptotic Dynamics of Gauge Invariant Charged Fields: QED versus QCD

1999

The freedom one has in constructing locally gauge invariant charged fields in gauge theories is analyzed in full detail and exploited to construct, in QED, an electron field whose two-point function W(p), up to the fourth order in the coupling constant, is normalized with on-shell normalization conditions and is, nonetheless, infra-red finite; as a consequence the radiative corrections vanish on the mass shell $p^2=\mu^2$ and the free field singularity is dominant, although, in contrast to quantum field theories with mass gap, the eigenvalue $\mu^2$ of the mass operator is not isolated. The same construction, carried out for the quark in QCD, is not sufficient for cancellation of infra-red …

PhysicsQuarkCoupling constantQuantum chromodynamicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsPropagatorFOS: Physical sciencesgauge theories QED QCD non local fieldsFactorizationHigh Energy Physics - Theory (hep-th)Quantum mechanicsGauge theoryQuantum field theoryMass gapMathematical physics
researchProduct

Vanishing chiral couplings in the large-Nc resonance theory

2007

5 pages, 2 figures.-- PACS nrs.: 12.39.Fe; 11.15.Pg; 12.38.-t.-- ISI Article Identifier: 000247625300022.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0611375

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theory[PACS] Chiral Lagrangians in quark modelsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyForm factor (quantum field theory)FOS: Physical sciencesPerturbation theoryResonance (particle physics)Low-energy constantsHigh Energy Physics - Phenomenologysymbols.namesake[PACS] Expansions for large numbers of components (e.g. 1/Nc expansions) in gauge theoriesHigh Energy Physics - Phenomenology (hep-ph)Quantum Chromodynamics (QCD)Resonance theorysymbolsPerturbation theoryChirality (chemistry)Lagrangian
researchProduct